Eigenvalue Sensitive Feature Selection

نویسندگان

  • Yi Jiang
  • Jiangtao Ren
چکیده

In recent years, some spectral feature selection methods are proposed to choose those features with high power of preserving sample similarity. However, when there exist lots of irrelevant or noisy features in data, the similarity matrix constructed from all the un-weighted features may be not reliable, which then misleads existing spectral feature selection methods to select ’wrong’ features. To solve this problem, we propose that feature importance should be evaluated according to their impacts on similarity matrix, which means features with high impacts on similarity matrix should be chosen as important ones. Since graph Laplacian(Luxburg, 2007) is defined on the similarity matrix, then the impact of each feature on similarity matrix can be reflected on the change of graph Laplacian, especially on its eigen-system. Based on this point of view, we propose an Eigenvalue Sensitive Criteria (EVSC) for feature selection, which aims at seeking those features with high impact on graph Laplacian’s eigenvalues. Empirical analysis demonstrates our proposed method outperforms some traditional spectral feature selection methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

Feature Selection using Eigenvalue Optimization and Partial Least Squares

Feature selection is an essential problem in many fields such as computer vision. In this paper we introduce a supervised feature selection criterion based on Partial Least Squares regression (PLS). We find an optimal feature subset by applying the theory of Optimal Experiment Design to optimize the eigenvalues of the loadings matrix obtained from PLS. Since PLS extracts components such that th...

متن کامل

Credit Card Fraud Detection using Data mining and Statistical Methods

Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...

متن کامل

High-dimensional classification by sparse logistic regression

We consider high-dimensional binary classification by sparse logistic regression. We propose a model/feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the non-asymptotic bounds for the resulting misclassification excess risk. The bounds can be reduced under the additional low-noise condition. The proposed complexity penalty ...

متن کامل

Feature Extraction Method of Rolling Bearing Fault Signal Based on EEMD and Cloud Model Characteristic Entropy

The randomness and fuzziness that exist in rolling bearings when faults occur result in uncertainty in acquisition signals and reduce the accuracy of signal feature extraction. To solve this problem, this study proposes a new method in which cloud model characteristic entropy (CMCE) is set as the signal characteristic eigenvalue. This approach can overcome the disadvantages of traditional entro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011